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Abstract—We study the general scattering interaction of acoustic pulses of arbitrary shape and
duration with a submerged elastic spherical shell. We first obtain the backscattering or sonar cross-
section (SCS) of such a target and analyze the resonance features that are present within its resonance
region. The elastic composition of the shell makes the resonance features become very prominent
in a very wide band. Transient echoes from submerged shells are related to poles of the scattering
amplitude and to their associated residues in the complex frequency plane. We show by exact
Fourier synthesis that the individual resonances associated with each pole (i.e., cigenfrequencies)
can be obtained and studicd one at a time, provided we use long illuminating pulscs, since these
excite transients at their carrier frequencies that ring and decay. Of greater practical importance is
the use of short pulses, not only because thesc are the most frequently used by sonars, but because
they are shown here to produce backscattered pulses with spectra that replicate the entire set of
features in the SCS of the shell. This replication of the SCS occurs in bands that have widths directly
proportional to their energy and their carrier frequency. x,. Our computational methodology can
handle pulses of any duration, shape, and any conceivable spectra, as well as lossless or lossy fluid-
loaded shells, either single or multi-layered. We can predict the returns in all instances. For long
insonifying pulses, the backscattered echoes exhibit a double transicnt nature when x, coincides
with any shell resonance. The successive tiil bursts that follow the specular part of the return in the
time domain not only are seen to decrease in amplitude, but the decrease oceurs in distinet discrete
jumps. We predict the backsciattered echoes for virrious types of pulses, carrier frequencies, bands,
shapes and durations and we display the results in the (non-dimensional) time and frequency
domains, while giving the appropriate physical interpretations of the results in all instances.

L. INTRODUCTION

Numerous works have studied the scattering of acoustic continuous waves (c.w.) by elastic
shells submerged in Auids. These studies have all been motivated by a desire to describe
and model the interaction of active sonars at sca with the submerged shells of their interest.
Since the volume of (open) publications from East to West on this subject is literally
gargantuan, it will only be possible to mention a few in this brief introduction.

Among the carliest works dealing with the spherical geometry and c.w. incidences are
the articles of Junger (1951), Junger and Feit (1969a), Feit and Junger (1969), and Goodman
and Stern (1962). Many other authors have also left their imprint, such as Hickling (1964),
Sergeev (1985), and Fender (1972). Much of this work has been incorporated into books
and monographs such as Junger and Feit (1972) and Veksler (1982, 1984).

The interaction of an active sonar with a scatterer is essentially a transient process.
Most sonars purposely use either long or short pulses, often of strange shapes and various
frequencics. To analytically or numerically deal with pulses as interrogating waveforms is
far more complicated. A number of works have dealt with the fundamentals of this more
general case such as the books of Nigul (1974), Friedlander (1958), and Metsaveer ez al.
(1979). as well as the articles of Weyker and Dudley (1987), and Kraus and Kalnins (1965).
The exact analysis of the scattering of various types of incident pulscs by a submerged
spherical shell seems to have been ignored up to the present. We present here a detailed
study of the scattering interaction of pulscs of various shapes and durations with a fluid-
loaded clastic spherical shell, and show the advantage/disadvantage in the use of various
pulse-shapes and pulse-durations. Although similar situations have been preliminarily
treated in a recent conference by Gaunaurd (1990), and by Werby (1989), for the case
of submerged shells near an environmental interface, we will not introduce such added

complication here, and leave it for a separate study (Gaunaurd and Werby, unpublished
results).
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We draw some comparisons to the radar literature of over three decades ago. partic-
ularly to the articles of Kennaugh and Cosgriff (1958), and Kennaugh and Moffatt {1965).
where analogous electromagnetic situations were analyzed. The code we have developed to
produce our calculations can generate predictions for the backscattered returns for elastic
as well as lossy (i.e., viscoelastic or viscoelastically-coated) shells, for any type of incident
pulse. having any spectrum, and in any frequency band. We display numerous results and
give their physical interpretation.

2. CLASSICAL SOLUTION IN THE STEADY-STATE (c.w.) CASE

Consider a plane sound wave incident on a spherical shell of outer radius « and inner
radius b. This incident wave is:

Pinc(r 6. 8) = pyexp (i{krcos § —wt)). H

The scattered pressure field is

Pu(r.0.0) = pye=™ Z i"(2n+ ) T,(x) P, (cos O)"(x), 83

naw

where x = ka and the incidence is on the South pole of the sphere. The total pressure field
is the sum of the two, namely

'

pr 00 =poe ™ Y i"n+ 1) P, (cos D)), (k r)+ T, ()" (k). (3
7w i}
Foranclastic shell filled with air and immersed in water, the coctlicients T,(x) are determined
from the boundary conditions and they turn out to be given by ratios of two 6x6
determinants, namely
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where the clements d,; are all known and were given elsewhere (cf. Ayres et al.. 1987).
In the far-ficld, k,# » 1, the asymptotic expansion for the spherical Hankel function,
given in Arfken (1966), is valid, and the scattered pressure can be expressed as:

o . 2
p(r,0.0) —;;—;—»%?exp {itkir—wn)]- {; [0, —‘f)] 5

where the scattering pattern in the last bracket is

:% :‘j (2n+ DT, (x)P,(cos 0). (6

L‘n-ﬂ

gft(o-vx) =

In the backscattering direction § = n, the sonar cross-section (SCS) is
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This concludes this synopsis of the backscattering problem in the c.w. case, as was found
previously in Ayres ¢t al. (1987) (see Appendix).

3. THE TRANSIENT SOLUTION FOR PULSED INCIDENCES

From eqns (5) and (6). the scattered pressure field can be expressed as

Pulr.x.T) = ?rﬂe*"' ‘5'[ S (~1y@n+ I)T,,(x)] ®)
n=10

where t" = (ct—r)/a. Consider a Fourier transform pair in the canonical variables x and
t’. namely

G(x) =J g(r)e " dv' and g(r') = -IZJ‘ G(x)e " dy. )]

5
-0 K

It was repeatedly shown by Gaunaurd and Uebcral (1985) and Ueberal and Gaunaurd
(1984) that to go from steady-state [eqn (8)] to transient solutions, all that one needs to do
is to replace the exponential pye ¢ by the right-hand side of the sccond of cqns (9), namely

o l L o
o e e ';' 10
Poc ZTZJ‘ ) G(x')e dx (1M

It is obvious that if G(x') = 2ap,d (x—x’), then eqn (10) is an identity. With this simple
replacement, eqn (8) becomes :

L a &)= [ , s i A
Pu(r.x,T) = 2,.;» — e J‘_.b G(X)T(x)e ot (ny

Equation (1 1) is the generalization of eqn (8), now for pulsed incidences. Using the definition
of the backscattered form-function in eqn (7). namely

fom9) = £ § (=17 Qa+ DT (12)
“*nal
ineqn (11) yiclds
rpe(n.t) = 2'; f [ (. x)G(x) e~ dx. (13)

This means that the scattered pulse in the t’-domain is the inverse Fourier transform
of the single-frequency response [namely the form-function f, (t,x’)] weighted by the
spectrum of the incident pulse. It is possible to apply input/output concepts of linear systems
theory to scattering situations. Defining the transform pair:
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S (A x) =f fe(r,r)e " dr (18)
f (n — l mF 2 —u'td . 15
Je(it) = o (n,x)e x (15)

valid in any direction A, then eqn (13) can be alternatively expressed in the equivalent
convolution form:

+x

rpe(n.t) = J g(t—1)f (n. 1) d1. (16)

which states that the scattered pulse in the t"-domain is the convolution of the incident
pulse g(t) and the scattered waveform for an impulsive source, also called the impulse
response in the t'-domain. These linear system concepts were introduced into the (radar)
scattering literature by Kennaugh and Cosgriff (1958). and by Kennaugh and Moffatt
(1965). and these works presented uscful approximations to generate estimates of the
scattered pulses. In what tfollows, we have computed our results by exact Fourier synthesis
and have not used the mentioned approximations. It is clear that if we substitute
G(x’) = 2np,d(x — x’) into the transient solution in eqn (13), we then recover the steady-
state solution in eqn (5) for c.w. incidences.
The form of eqn (13) most suitable tor computations is:

mmw=§mm (17

where
() = 2—'& J [GX) fo(m. x)] e ¢ de’ (18)

and
fim.x) = (=1 @n+ DT, ) (19)

where the T,(xv) are the determinant ratios in eqn (4), and where we have defined :

fomx)= Y filmx). (20)

n =1

We now illustrate these ideas with numerical calculations pertaining to an air-filled steel
shell submerged in water under insonification by various types of pulscs.

4. TYPES OF PULSES USED

The idea is to use any arbitrary interrogating short or long pulse. A few examples are
illustrated below.
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Type | : constant pulse of duration t*
This is given by

A 0t ,
91 =10 elsewhere b
and the spectrum is
stn (xt*/2) .,
Gi(x) = At* ————e™ ° 22
1(¥) T t*72) (
Type 2 : damped cosinusoid starting at t = 0
This is given by
Ae " cosxgt >0 ,
g:(1) = 0 <0 (23
and its spectrum is
b(h* + x>+ x3) +ix(h* + x2 —x})
WY = ;Y 3 5 373 24
G:(v =4 (bFFxi— X +abiy? (24)
Type 3. sinusoid of duration t*
sinygt 0t ,
91 =19 clsewhere. (25
The sinusoid has N cycles in the duration t*, namely t* = 2rN/x,. lts spectrum is
| —o'tr + 501" | - WY - x0Tt
Gy(x) =~ c (26)

2x+x0) B 2x—xy)

Any other conceivable pulse can be handled numerically by means of available fast Fourier
transform (FFT) software packages discussed in volumes such as Press e af. (1986). The
spectra given above [cf. egns (22), (24) and (26)] are found by direct evaluation of eqn (9a)
or from available tables such as Campbell and Foster’s (1948), or Champeney's (1973).

5. NUMERICAL RESULTS AND DISCUSSION

A plane sound-wave is incident on the South pole of a spherical stainless-steel shell of
outer radius « and inner radius b. The shell has dimensions ¢ = 505 cm, b = 500 cm, and
therefore, i = 1 —h/a = 1%. The shell is air-filled and it is submerged in water. The material
parameters of the shell and its surrounding fluids are given in Table 1. To relate Eto v to
the shear and dilatational wavespeeds we use:

Table [. Material parameters of the shell and the fluids

Density Dilatational spced  Shear speed  Young's modulus  Poisson's
pgemY) cg(ems-Y) c,(cms™") E (dyne cm~?) ratio, v
Stainless steel 7.9 5.78 < 10° 3.09x10° 19.6 x (0" 0.3
Water 1.0 {.5x10° 0 —_ —
Air 0.0012 0.344 x 10? 0 — —_

SAS 27:6-C
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Fig. 1. Backscattering or sonar cross-section (SCS) of an air-filled. stainless steel spherical shell

immersed in water versus non-dimensional frequency x (= &,a). The material properties are given

in Table {. The shell thickness is # = 1%. The arrows indicate (fow-frequency) spectral locations
coinciding or not with a shell resonance.

or inverting
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In the carlier work of Gaunaurd and Werby (1987), slightly lighter steel, and also lighter
aluminum and tungsten carbide (WC), were used.

Figure | shows the (normalized) sonar cross-section (SCS) of the shell as computed
by the classical expression, eqn (7), for the case of ¢c.w. incidences. The frequency band
displayed is: 0 € x = ka € 30. We had found similar SCS for similar shells in much wider
{0 < x < 200) bands. Our main interest is now for: x £ 10. We note a peak at x, = 8.85
and a plateau at x, = 9.90, among many others. The methodology of the resonance
scattering theory (RST) as applied to spherical shells (see, for example, Gaunaurd and
Kalnins, 1982) has shown that subtraction of the rigid or soft “backgrounds™ from the
elastic response in Fig. 1 isolates the resonances. These backgrounds are displayed in Fig.
2a in the same band, for illustration purposes. For the present shell in this band, the
rigid background scems to be the proper buckground to suppress in order to extract the
resonances, as discussed by Gaunaurd and Werby (1986). Except for a strong resonance in
the interval 1 € x € 3 that manifests itself in a sequence of contiguous peaks, the SCS in
Fig. | exhibits the usual pattern of inverted Us, The resonance peaks/dips appear super-
imposed on the background which, as can be seen in Fig. 1, is mostly flat with small
deviations around an ordinate value of unity. Thus, for the most part, the frequency
response is that of an impenetrable scatterer. Sound penctration into the structure takes
place only through narrow spectral windows centered at the shell resonances. Figure 2b
shows the result of subtracting the rigid background from the elastic response in Fig. 1.

Figure 3 shows the spectrum G.{x} of a Type 2 pulse [cf., eqn (24)] displayed in
absolute value vs frequency in the case of a small amount of damping (namely b = x,/20)
and a carrier frequency xq ~ 11. These values are arbitrary. The location of the spectral
peaks occurs at the value of carrier frequency x,.
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Fig. 2a). The rigid (top) and soft (bottom) backgrounds associated with the sume shell, in the same
frequency band : 0 € x € 30. These are the spectral responses of impenctrable spheres of the sume
size but of opposite and extreme compositions,
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Fig. 2(b}. Residual response obtained by subtracting the rigid background (Fig. 2a. top) from the
clastic response (in Fig. 1), in the manner of the RST. Resonance peaks are isolated in this fashion.
We selected the third such peak (at 8.85) as our basic resonance,
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Fig. 3. Spectrum of an incident Type 2 pulse with carrier frequency x, and damping constant
b = x,/20. The spectrum is complex and is displayed in modulus vs x. The peak occurs at x = x,.

Figure 4 shows short (top) and long (bottom) incident Type 3 pulses (cf. left column)
and their spectra (cf. right column) as given by eqns (25) and (26). respectively. In both
cases the carrier frequency is fixed at x, = 8.85. which coincides with a resonance peak in
Figs 1 and 2b. The short pulse has (non-dimensional) duration t* = |, and for this carrier
frequency it has N = 1.4 cycles. The long pulse has N = 20 cycles and duration t* = 14.2,
The peak of the spectrum always appears at the carrier frequency x, and there are an
infinity of side-lobes on both sides. The zero-crossings are xo/N apart in the spectrum.
These complex spectra are displayed in absolute values.

The scattered pulses are much harder to compute. We use either eqn (13) oregns (17)-
(20). Figure § shows the result of the calculation for the backscattered pulse (left column)
which results when a short incident pulse hits the shell {(¢f. Fig. 4a). The carrier frequency
is vy = 8.85 (top) and x, = 9.90 (bottom). The backscattered pulse (left column) shows the
initial replica of the incident pulse, followed by a long tail. The bottom graphs correspond
to the case where x, coincides with a platcau of Fig. . Hencee, here the carrier frequency
coincides, or not, with a shell resonance. The main advantage of using short pulses is that
their backscuttered spectra at resonance (upper right) reproduce the features (marked by
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Fig. 4. Short (top} and long (bottom) incident Type 3 pulses (left column) of carrier frequency

Xq = 8.85. The pulse duration of the short one is t® = | and the number of cycles of the long one

is ¥ = 20, Their spectra are shown in modulus in the right column. They show peaks at the carrier
frequency x, with N = o lobes at both sides.
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Fig. 5. Backscattering pulses resulting when shore incident pulses of carrier frequency x, = 8.85

(top) and vy, = 9.90 (bottom) are returncd by the shell. Their respective rectitied spectra are displayed

in the right column, In the upper (lower) case, the carrier frequency coincides (or not) with a shell

resonance. The left column exhibits the amplitude decrease of the successive tail bursts in discrete

steps. The right column shows the replication, up to x ~ x; of the SCS we saw in Fig. 1, in a more
evident fashion in the upper right plot.

arrows) of the SCS as they appear in Fig. 1, at least up to the chosen value of x,, with a
fast decay afterwards. In the (non-dimensional) tT-domain, the tail of the scattered pulse
consists of a sequence of bursts each a few cycles long and of progressively decreasing
amplitudes which are seen to decrease in discrete steps as illustrate in Fig. 5 (left column).

These trailing bursts are the creeping-wave components of the returncd echo—modified
by the fact that the target is now clastic rather than impenetrable—as they have been
analyzed by Gaunaurd and Ueberal (1985) and Ueberal and Gaunaurd (1984). The spectra
in the right column are obtained by means of the FFT puckage given by Press er al. (1986).
Thus, a short incident sinusoidal pulse excites all the resonances in the shell and after
scattering, it yields a replica of the shell’s SCS up to frequencies slightly above the value of
the carrier frequency. The replica is more accurate when the carrier frequency coincides
with a target resonance (upper right) than when it does not (bottom right).

The result of using Type | and Type 2 pulses is illustrated in the top and bottom halves
of Fig. 6. respectively. The tails of the backscattered pulses displayed the same sequence of
bursts of decreasing amplitude, all with the amplitudes decreasing in discrete steps or jumps.
The spectrum in the bottom right graph shows a peak at the carrier frequency, which in
that case was chosen to bc xq = 8.85. The upper right plot is for a pulse without carrier
frequency. and that explains the poorly informative results it yields. These graphs all display
the real part of the scattered pressure ficld. The imaginary part vanishes identically in all
instances.

Figure 7 displays the backscattered pulses resulting when long Type 3 pulses of N = 20
cycles are incident on the shell. These scattered pulses exhibit an initial (specular) portion
followed by a succession of bursts of decreasing amplitude which (again) are seen to
decrease in discrete steps. We note in these cases that both the incident and scattered pulses
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Fig. 6. Backscattered pulses resulting when incident Type 1 (top) and Type 2 (bottom) pulses are

returncd by the shell. Their respective spectra are shown rectified in the right column. The bottom

right spectrum exhibits a peak at x = x, = R.RS, not present in the upper right plot since Type |

pulses have no caerier frequency. The t-domain plots (left) still show the amplitude decrease of the
tail bursts in discrete steps.

have duration t* = 14.2 when x, = 8.85 (at resonance), and duration ™ = 12,7 when
Xy = 9.90 (away from resonance), as we can verify in Figs 4 and 7. The spectra in the right
column of Fig. 7 have strong peuaks at the carrier frequency and smaller values everywhere
else. A long pulse of carrier frequency x, has most of its spectral response at that frequency,
as we see in Fig. 4. This continues to be the case after scattering as can be verified in Fig.
7. The spectral differences between the incident and scattered pulses appear mostly in the
side-lobes, and are relatively smull (cf. Figs 4 and 7). This non-uniformity of the side-lobes
in the scattered spectra (cf. Fig. 7, right column) is the cause of the long tail behind the
specular portion of the response in the t-domain. We further note that away from any
resonance (bottom plots, x, = 9.90) the specular portion of the return is an accurate
replica of the incident pulse. However, near a shell resonance (at x, = 8.85, upper plots) a
constriction or narrowing appears in the middle of the specular portion of the return. This
constriction is an indication of the double transient nature of the response, and of the fact
that x, is then coinciding with one of the shell resonances.

6. PHYSICAL INTERPRETATION AND CONCLUSIONS

We have gencrated the exact scattering solution for several cases in which either long
or short incident pulses of various shapes are scattered by elastic spherical shells in water.
These transient interactions arc fundamental in practice since sonar interrogration is essen-
tially a transient process.

If long sinusoidal pulses are used as incident waveforms on submerged shells, we have
actually demonstrated by Fourier synthesis that when the carrier frequency of the pulse
coincides with any of the shell resonances, the spectrum of the resulting scattered pulse
basically consists of a large resonance peak that is created precisely at that frequency, that
later rings and decays. This scems to be in keeping with the predictions of a radar scattering
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Fig. 7. Backscattered pulses resulting when long incident pulses of carrier frequency xg = 8.85 (top,
at resonance) and x, = 9.90 (bottom, away from resonance) are returned by the shell. Their
respective rectified spectra are displayed in the right column. The r-domain plots (left) show the
amplitude decrease of the tail bursts which oceurs in discrete steps, and also the constriction in the
middle of the specular part of the return that developes (top) when x, coincides with a shelt
resonance. The spectra (right column) show peaks at the respective carrier frequencies, with sets off
non-uniform minor lobes on both sides. This shows that long incident pulses (as in Fig. 4, bottom)
have buckscattered returns with spectra having main contributions just at the carrier frequency, as
postulated in radar cases by the Singularity Expansion Method.

approach known as the Singularity Expansion Method developed by Baum (1976), which
associates individual (ringing) pole-resonances with damped sinusoids. It then follows that
individual pole-resonances can be identified one by one from the observation of their
ringing. If the carrier frequency of the incident pulse does not coincide with any of the shell
resonances, then no ringing develops, and no identification is possible.

For the more important case of the short incident pulses, it turns out that the back-
scattered (transient) response contains all the resonance features of the SCS (or steady-
state response, or single frequency response) for the c.w. case. We have recovered these
features by actual Fourier synthesis in frequency bands that go slightly beyond the value
of the carricr frequency. This is the main advantage of using short pulses of high encrgy
content. A short pulse has a broad spectrum (cf. Heisenberg's Uncertainty Principle) that
can excitc many resonances at the same time, and their contributions superimpose in the
scattered return forming the shell’s SCS.

We underline here that although the shell used in our analysis was purely elastic, it
could have had viscoelastic losscs (namely sound-absorption capability). That would have
meant that the shear and dilatational wavenumbers k,_and &, _ in the shell could have been
complex rather than real. Our computational code is'equally. effective in this viscoelastic
case, and also when the shell is covered with a sound-absorbing layer, as discussed by
Gaunaurd and Kalnins (1982).
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The simple two-line derivation of eqn (1 [) that we gave rests on the observation made
earlier (see. for example, Ueberal and Gaunaurd, 1984) that the correct result follows with
the replacement we have shown in eqn (10). We repeat that the resonance features in an
SCS from a penetrable (i.e., elastic) body can be isolated by a process of background
suppression (cf. Fig. 2b) that we have repeatedly obtained and explained (see, for example.
the review of Gaunaurd. 1989). which amounts to subtracting from each mode f,(r, x)
the corresponding contribution from an identical scatterer of impenetrable composition.
The resonance “lines’ that are thus isolated constitute the target's spectrogram. An alter-
native procedure that does not require background subtraction is to determine the poles of
the scattering amplitude by solving the corresponding eigenfrequency condition. In the
present case. the poles are the zeros in the denominator of the coefficients T,(x) [the zeros
of D,(x) in eqn (4)]. These poles split into two great families. as found by Gaunaurd (1987).
One family. due to the scatterer’s shape. is almost indistinguishable from the poles of a rigid
sphere. which are given by the roots of 4" (x) =0 in the complex x-plane. We have
computed and displayed all these poles elsewhere (for example. in the review by Gaunaurd.
1989b). The other family appears just below the real axis, in the lower half of the complex
x-plane. This family is purely due to target composition or elastic penetrability. These two
clearly distinguishable families of poles separate the effects of shape and composition. Each
sub-family within each of these two great families of poles can be used to generate dispersion
plots for the phase or group velocities or attenuations of the surface waves excited within
the shell material, and of the various creeping-waves revolving around the shell in the outer
medium. The procedure rests on very simple formulas given in the mentioned review, A
spectral resonance (or “line™) is associated with the real part of the corresponding pole-
position, and its “width™ is associated with the imaginary part. The larger the (negative)
ordinate of a pole is, the more attenuated will be the surface wave associated with that pole.
The poles closest to the real axis (such as the composition poles) are the ones that have the
strongest influence. More distant poles have more attenuated contributions.

The “double transient™ shape of backscattered pulses (cf. Fig. 7) has been observed
by Gaunaurd and Tsui (1988) und Tsui et «f. (1988), and others, in experiments dealing
with cylindrical shells, This peculiar pulse shape exhibits @ narrow region—the forced
vibration region—-in the middle of the initial or specular part of the return, whenever x,
coincides with a shell resonance. Away from any resonance such a constriction is not formed
or seen. This behavior at resonance was explained on the basis of the response of a simple
harmonic osciltator(!). As the initial transient caused by the interaction of the shell with
the leading edge of the pulse dies out, a steady-stute region develops that is later interrupted
as the tail edge of the pulse interacts again with the shell as it goes by. This final interaction
with the tail-end produces the second transient, which is followed by the final ringing and
decay of the response. Sumpling the buckscuttered pulses within the constriction (i.e., in
the forced-vibration region) yields a complicated pattern because many harmonics interact
there (see Gaunaurd and Tsui, 1988) to produce the SCS. Sampling past the second transient
region, just as the ringing starts, isolates the single resonance component that is decaying.
This bchavior at resonance can be exploited to extract information about the penetrable
nature of the shell, which serves to characterize it uniquely. This target-identification
capability is not possible if x, docs not coincide with any of the shell resonances as
manifested in its SCS. We conclude by stating that the code we have developed can handle
any type of incident pulse, in any frequency band, for lossless or lossy shells. Portions of
this work were presented at an international mecting (Strifors and Gaunaurd, 1989).
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APPENDIX

The clements d, of the determinants in egn (4) were all given in Ayres ef al. (1987). A few typos/misprints
appearcd in five of these clements, namely o, dy\, dyy, dyg and d,4. To set the record straight we give the corrected
forms below

dyy = kiahVkya)
doy = Ak by, (kb + (200 + 1) — kb7 yo(kysh)
aa = 2n0n+ Dk, bfL Kk b) = ju(k,2B)
dos = 2k b7,k B) + kb —2n(n + 1) + 2], (k,:h)
dys = 2k by ko By + k507 = 2n(n+ 1) + 2 v, (koh).

The underlined letters correct the earlier errors.



